Что такое внутренняя энергия чему равна. Купить диплом о высшем образовании недорого. Н. п.,, моу июльская сош с уиоп, с. июльское, воткинский р-н, удмуртская республика

Вну́тренняя эне́ргия тела (обозначается как E или U ) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

Эта формула является математическим выражением первого начала термодинамики

Для квазистатических процессов выполняется следующее соотношение:

Идеальные газы

Согласно закону Джоуля, выведенному эмпирически, внутренняя энергия идеального газа не зависит от давления или объёма. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, . Так как внутренняя энергия идеального газа является функцией только от температуры, то

.

Эта же формула верна и для вычисления изменения внутренней энергии любого тела, но только в процессах при постоянном объёме (изохорных процессах); в общем случае является функцией и температуры, и объёма.

Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:

,

где - количество вещества, - изменение температуры.

Литература

  • Сивухин Д. В. Общий курс физики. - Издание 5-е, исправленное. - М .: Физматлит , 2006. - Т. II. Термодинамика и молекулярная физика. - 544 с. - ISBN 5-9221-0601-5

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Внутренняя энергия" в других словарях:

    внутренняя энергия - Функция состояния закрытой термодинамической системы, определяемая тем, что ее приращение в любом процессе, происходящем в этой системе, равно сумме теплоты, сообщенной системе, и работы, совершенной над ней. Примечание Внутренняя энергия… … Справочник технического переводчика

    Энергия физ. системы, зависящая от её внутр. состояния. В. э. включает энергию хаотического (теплового) движения всех микрочастиц системы (молекул, атомов, ионов и т. д.) и энергию вз ствия этих ч ц. Кинетич. энергия движения системы как целого и … Физическая энциклопедия

    ВНУТРЕННЯЯ ЭНЕРГИЯ - энергия тела или системы, зависящая от их внутреннего состояния; складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах, энергии взаимодействия электронных… … Большая политехническая энциклопедия

    Тела складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах и т. д. Во внутреннюю энергию не входит энергия движения тела как целого и потенциальная энергия … Большой Энциклопедический словарь

    внутренняя энергия - ▲ энергия материальное тело, в соответствии с, состояние, внутренний температура внутренняя эн … Идеографический словарь русского языка

    внутренняя энергия - – это полная энергия системы за вычетом потенциальной, обусловленной воздействием на систему внешних силовых полей (в поле тяготения), и кинетической энергии движущейся системы. Общая химия: учебник / А. В. Жолнин … Химические термины

    Современная энциклопедия

    Внутренняя энергия - тела, включает кинетическую энергию составляющих тело молекул, атомов, электронов, ядер, а также энергию взаимодействия этих частиц друг с другом. Изменение внутренней энергии численно равно работе, которую совершают над телом (например, при его… … Иллюстрированный энциклопедический словарь

    внутренняя энергия - термодинамическая величина, характеризизующая количество всех видов внутренних движений, совершенных в системе. Измерить абсолютную внутреннюю энергия тела невозможно. На практике измеряют лишь изменение внутреннюю энергию… … Энциклопедический словарь по металлургии

    Тела, складывается из кинетической энергии молекул тела и их структурных единиц (атомов, электронов, ядер), энергии взаимодействия атомов в молекулах и т. д. Во внутреннюю энергию не входит энергия движения тела как целого и потенциальная энергия … Энциклопедический словарь

Книги

  • Путь Ци. Энергия жизни в вашем теле. Упражнения и медитации , Свейгард Мэтью. Уравновешенность и внутренняя гармония даны нам от рождения, но современная жизнь легко может выбить нас из естественного равновесия. Иногда мы нарушаем его сознательно, скажем, едим слишком…

Основной характеристикой внутреннего состояния физической системы является ее внутренняя энергия .

Внутренняя энергия (U ) включает в себя энергию хаотического (теплового) движения всех микрочастиц системы (молекул, атомов, ионов и т.п..) и энергию взаимодействия этих частиц, т.е. кинетическую, потенциальную и т.д., за исключением суммарной энергии покоя всех частиц.

Свойства внутренней энергии

1. В состоянии термодинамического равновесия частицы, входящие в состав макроскопических тел, движутся так, что их полная энергия все время с высокой точностью равна внутренней энергии тела.

2. Внутренняя энергия является функцией состояния физической системы.

3. Внутренняя энергия физической системы не зависит от пути перехода ее из одного состояния в другое, а определяется только значениями внутренней энергии в начальном и конечном состояниях: D U = U 2 - U 1 .

4. Внутренняя энергия характеризуется свойством аддитивности, т.е. она равна суммарной внутренней энергии тел, входящих в систему.

Замечание: частицы газа, кроме поступательных степеней свободы, имеют еще и внутренние. Например, если частицами газа являются молекулы, то, кроме электронного движения, возможно вращение молекул, а также колебания атомов, входящих в состав молекул.

Поступательное движение частиц газа подчиняется классическим законам, а их внутренние движения носят квантовый характер. Лишь при определенных условиях внутренние степени свободы можно считать классическими.

Для расчета внутренней энергии идеального газа используют закон равнораспределения энергии по классическим степеням свободы. В случае идеального газа учитывается только кинетическая энергия поступательного движения частиц. Если частицами газа являются отдельные атомы, то каждый имеет три поступательные степени свободы.

Следовательно, каждый атом обладает средней кинетической энергией:

< e k > =3 kT /2.

Если газ состоит из N атомов, то его внутренняя энергия

Если же возбуждаются еще и колебательные степени свободы молекул, то вклад их во внутреннюю энергию

.

(1.27)

В формуле (1.27) учтено, что каждое колебательное движение молекул характеризуется средней кинетической и средней потенциальной энергиями, которые равны между собой. Поэтому согласно закону равнораспределения энергии по степеням свободы на одну колебательную степень свободы приходится в среднем энергия kT.

Таким образом, если молекула двухатомная, то полное число степеней свободы ее i =6. Три из них поступательные (i пост =3), две вращательные (i вр =2) и одна колебательная (i кол =1). При температурах, когда еще “заморожены” колебательные степени свободы, внутренняя энергия двухатомных молекул идеального газа .

Если же колебательные степени свободы “разморожены”, то внутренняя энергия двухатомных молекул идеального газа U = U пост + U вр + U кол =.

Таким образом, внутренняя энергия одноатомного идеального газа

U = N < e k > = (3/2)NkT ,

(1.28)

где < e k > = .

Число молей газа n =N/ N a = m / M, то

Любое тело или предмет обладают энергией. Например, летящий самолет или падающий шар обладают механической энергией. В зависимости от взаимодействия с внешними телами различают два вида механической энергии: кинетическая и потенциальная. Кинетической энергией обладают все предметы, которые тем или иным способом движутся в пространстве. Это самолет, птица, летящий в ворота мяч, перемещающийся автомобиль и др. Вторым видом механической энергии является потенциальная. Этой энергией обладают, например, поднятый камень или мяч над поверхностью земли, сжатая пружина и т.п. При этом кинетическая энергия тела может переходить в потенциальную и наоборот.

Самолеты, вертолет и дирижабль обладают кинетической энергией


Сжатая пружина обладает потенциальной энергией

Рассмотрим пример. Тренер поднимает мяч и держит его в руках. При этом мяч обладает потенциальной энергией. Когда тренер бросает мяч на землю, то у него появляется кинетическая энергия, пока он летит. После того, как мяч отскакивает, также происходит перетекание энергии до тех пор, пока мяч не будет лежать на поле. В этом случае и кинетическая и потенциальная энергии равны нулю. Но у мяча при этом повысилась внутренняя энергия молекул из-за взаимодействия с полем.

Но существует еще внутренняя энергия молекул тела, например, того же мяча. Пока мы его перемещаем или поднимаем, внутренняя энергия не изменяется. Внутренняя энергия не зависит от механического воздействия или движения, а зависит только от температуры, агрегатного состояния и других особенностей.

В каждом теле имеется множество молекул, они могут обладать как кинетической энергией движения, так и потенциальной энергией взаимодействия. При этом внутренняя энергия является суммой энергий всех молекул тела.

Как изменить внутреннюю энергию тела

Внутренняя энергия зависит от скорости движения молекул в теле. Чем быстрее они движутся, тем выше энергия тела. Обычно это происходит при нагревании тела. Если же мы его охлаждаем, то происходит обратный процесс - внутренняя энергия уменьшается.

Если мы нагреваем кастрюлю при помощи огня (плиты), то мы совершаем над этим предметом работу и, соответственно, изменяем его внутреннюю энергию.

Внутреннюю энергию можно изменить двумя основными способами. Совершая работу над телом, мы увеличиваем его внутреннюю энергию и наоборот, если тело совершает работу, то его внутренняя энергия уменьшается. Вторым способом изменения внутренней энергии является процесс теплопередачи. Обратите внимание, что во втором варианте над телом не совершается работы. Так, например, нагревается стул зимой, стоящий рядом возле горячей батареи. Теплопередача всегда происходит от тел с более высокой температурой к телам с меньшей температурой.

Таким образом, зимой нагревается воздух от батарей. Проведем небольшой эксперимент, который можно выполнить в домашних условиях. Наберите стакан горячей воды и поставьте его в чашу или контейнер с холодной. Через время температура воды в обоих сосудах станет одинаковой. Это и является процессом теплопередачи, то есть изменения внутренней энергии без совершения работы. Существует три способа теплопередачи:

Согласно MKT все вещества состоят из частиц, которые находятся в непрерывном тепловом движении и взаимодействуют друг с другом. Поэтому, даже если тело неподвижно и имеет нулевую потенциальную энергию, оно обладает энергией (внутренней энергией), представляющей собой суммарную энергию движения и взаимодействия микрочастиц, составляющих тело. В состав внутренней энергии входят:

  1. кинетическая энергия поступательного, вращательного и колебательного движения молекул;
  2. потенциальная энергия взаимодействия атомов и молекул;
  3. внутриатомная и внутриядерная энергии.

В термодинамике рассматриваются процессы при температурах, при которых не возбуждается колебательное движение атомов в молекулах, т.е. при температурах, не превышающих 1000 К. В этих процессах изменяются только первые две составляющие внутренней энергии. Поэтому под внутренней энергией в термодинамике понимают сумму кинетической энергии всех молекул и атомов тела и потенциальной энергии их взаимодействия.

Внутренняя энергия тела определяет его тепловое состояние и изменяется при переходе из одного состояния в другое. В данном состоянии тело обладает вполне определенной внутренней энергией, не зависящей от того, в результате какого процесса оно перешло в данное состояние. Поэтому внутреннюю энергию очень часто называют функцией состояния тела .

Внутренняя энергия - величина, характеризующая термодинамическое состояние тела. Каждое тело состоит из частиц, которые постоянно движутся и взаимодействуют друг с другом. Внутренняя энергия тела является суммой кинетической энергии движения частиц вещества и потенциальной энергии их взаимодействия.

Ч ислом степени свободы называется число независимых переменных, определяющих положение тела в пространстве и обозначается i .


Как видно, положение материальной точки (одноатомной молекулы) задаётся тремя координатами, поэтому она имеет три степени свободы : i = 3

Внутренняя энергия зависит от температуры. Если изменяется температура, значит изменяется внутренняя энергия.

Изменение внутренней энергии

Для решения практических вопросов существенную роль играет не сама внутренняя энергия, а ее изменение ΔU = U2 - U1. Изменение же внутренней энергии рассчитывают, исходя из законов сохранения энергии.
Внутренняя энергия тела может изменяться двумя способами:

1. При совершении механической работы .

а) Если внешняя сила вызывает деформацию тела, то при этом изменяются расстояния между частицами, из которых оно состоит, а следовательно, изменяется потенциальная энергия взаимодействия частиц. При неупругих деформациях, кроме того, изменяется температура тела, т.е. изменяется кинетическая энергия теплового движения частиц. Но при деформации тела совершается работа, которая и является мерой изменения внутренней энергии тела.

б) Внутренняя энергия тела изменяется также при его неупругом соударении с другим телом. Как мы видели раньше, при неупругом соударении тел их кинетическая энергия уменьшается, она превращается во внутреннюю (например, если ударить несколько раз молотком по проволоке, лежащей на наковальне, - проволока нагреется). Мерой изменения кинетической энергии тела является, согласно теореме о кинетической энергии, работа действующих сил. Эта работа может служить и мерой изменения внутренней энергии.

в) Изменение внутренней энергии тела происходит под действием силы трения, поскольку, как известно из опыта, трение всегда сопровождается изменением температуры трущихся тел. Работа силы трения может служить мерой изменения внутренней энергии.

2. При помощи теплообмена . Например, если тело поместить в пламя горелки, его температура изменится, следовательно, изменится и его внутренняя энергия. Однако никакая работа здесь не совершалась, ибо не происходило видимого перемещения ни самого тела, ни его частей.

Изменение внутренней энергии системы без совершения работы называется теплообменом (теплопередачей).

Существует три вида теплообмена: теплопроводность, конвекция и излучение.

а) Теплопроводностью называется процесс теплообмена между телами (или частями тела) при их непосредственном контакте, обусловленный тепловым хаотическим движением частиц тела. Амплитуда колебаний молекул твердого тела тем больше, чем выше его температура. Теплопроводность газов обусловлена обменом энергией между молекулами газа при их столкновениях. В случае жидкостей работают оба механизма. Теплопроводность вещества максимальна в твердом и минимальна в газообразном состоянии.

б) Конвекция представляет собой теплопередачу нагретыми потоками жидкости или газа от одних участков занимаемого ими объема в другие.

в) Теплообмен при излучении осуществляется на расстоянии посредством электромагнитных волн.

Проверяем усвоение материала:

Любое макроскопическое тело имеет энер-гию , обусловленную его микросостоянием. Эта энергия называется внутренней (обо-значается U ). Она равняется энергии дви-жения и взаимодействия микрочастиц, из которых состоит тело. Так, внутренняя энер-гия идеального газа состоит из кинетической энергии всех его молекул, поскольку их вза-имодействием в данном случае можно пре-небречь. Поэтому его внутренняя энергия за-висит лишь от температуры газа (U ~ T ).

Модель идеального газа пре-дусматривает, что молекулы на-ходятся на расстоянии несколь-ких диаметров друг от друга. Поэтому энергия их взаимо-действия намного меньше энер-гии движения и ее можно не учитывать.

У реальных газов, жидкостей и твердых тел взаимодействием микрочастиц (атомов, молекул, ионов и т. п.) пренебречь нельзя, поскольку оно существенно влияет на их свойства. Поэтому их внутренняя энергия состоит из кинетической энергии теплового движения микрочастиц и потенциальной энергии их взаимодействия. Их внутренняя энергия, кроме температуры T, будет за-висеть также от объема V, поскольку изме-нение объема влияет на расстояние между атомами и молекулами, а, следовательно, и на потенциальную энергию их взаимодей-ствия между собой.

Внутренняя энергия — это функция состояния тела, которая опреде-ляется его температурой T и объемом V.

Внутренняя энергия однознач-но определяется температурой T и объемом тела V, характе-ризующими его состояние: U = U(T, V)

Чтобы изменить внутреннюю энергию те-ла, нужно фактически изменить или кинетическую энергию теплового движения мик-рочастиц, или потенциальную энергию их взаимодействия (или и ту и другую вместе). Как известно, это можно сделать двумя способами — путем теплообмена или вслед-ствие выполнения работы. В первом случае это происходит за счет передачи опреде-ленного количества теплоты Q; во втором — вследствие выполнения работы A.

Таким образом, количество теплоты и выполненная работа являются мерой изме-нения внутренней энергии тела :

Δ U = Q + A.

Изменение внутренней энер-гии происходит за счет отдан-ного или полученного телом не-которого количества теплоты или вследствие выполнения ра-боты.

Если имеет место лишь теплообмен, то изменение внутренней энергии происходит путем получения или отдачи определенного количества теплоты: Δ U = Q. При нагрева-нии или охлаждении тела оно равно:

Δ U = Q = cm(T 2 — Т 1) = cm ΔT.

При плавлении или кристаллизации твер-дых тел внутренняя энергия изменяется за счет изменения потенциальной энергии вза-имодействия микрочастиц, ведь происходят структурные изменения строения вещества. В данном случае изменение внутренней энер-гии равняется теплоте плавления (кристал-лизации) тела: ΔU — Q пл = λ m, где λ — удель-ная теплота плавления (кристаллизации) твер-дого тела.

Испарение жидкостей или конденсация пара также вызывает изменение внутренней энергии , которая равна теплоте парообра-зования: Δ U = Q п = rm, где r — удельная теп-лота парообразования (конденсации) жидко-сти.

Изменение внутренней энергии тела вслед-ствие выполнения механической работы (без теплообмена) численно равно значению этой работы: Δ U = A.

Если изменение внутренней энергии происходит вследст-вие теплообмена, то Δ U = Q = cm(T 2 — T 1), или Δ U = Q пл = λ m, или Δ U = Q п = rm.

Следовательно, с точки зрения моле-кулярной физики: Материал с сайта

Внутренняя энергия тела является суммой кинетической энергии теп-лового движения атомов, молекул или других частиц, из которых оно состоит, и потен-циальной энергии взаимодействия между ни-ми; с термодинамической точки зрения она является функцией состояния тела (системы тел), которая однозначно определяется его макропараметрами — температурой T и объе-мом V.

Таким образом, внутренняя энергия — это энергия системы, которая зависит от ее внутреннего состояния. Она состоит из энергии теплового движения всех микро-частиц системы (молекул, атомов, ионов, электронов и т. п.) и энергии их взаи-модействия. Полное значение внутренней энергии определить практически невоз-можно, поэтому вычисляют изменение внут-ренней энергии Δ U, которое происходит вследствие теплопередачи и выполнения ра-боты.

Внутренняя энергия тела равна сумме кинетической энергии теплового движения и потен-циальной энергии взаимодей-ствия составляющих его мик-рочастиц.

На этой странице материал по темам:

  • От чего зависит внутренняя энергия твердого тела

  • Способ изменения внутренней энергии тела краткий конспект

  • От каких макропараметров зависит внутренняя энергия тела

  • Краткое сообщение "об использования внутренней энергии тела"